STAT 201 Chapter 9.4

Two Types of Errors

Errors Associated with Testing

• Type I Error occurs when H_o is rejected but in reality H_o is true

• Type II Error occurs when H_o is not rejected but in

reality H_o is false

aisc		Truth	
		H_0	H_a
		Correct	Type II
	H_0	Decision	Error
Decisio			Correct
n	H_a	Error	Decision

Controlling Error

- We can control the probability of Type I Error by our choice of the level of significance/confidence
- P(Type I Error) = significance level = 1-confidence level
- Though we can't control the probability of Type II
 Error directly, when we decrease the probability of Type I Error the probability of Type II Error increases

Controlling Error

- To increase Type I error: decrease confidence
- To decrease Type I error: increase confidence

- To increase Type II error: decrease Type I error
 increase confidence
- To decrease Type II error: increase Type I error
 → decrease confidence

Example 1

- You are planning to hold a party for our STAT 201 class, and you are interested to know at 95% confidence level, whether less than 60% of students will attend.
- H_o : $p \ge 0.6$ and H_a : p < 0.6
- **Type I error**: Your decision is to accept H_a but in reality H_0 is true, which means you believe less than 60% of students will attend, but in reality in that party night, more student will come. There might not be enough refreshments or chairs to serve.

Example 1

- You are planning to hold a party for our STAT 201 class, and you are interested to know at 95% confidence level, whether less than 60% of students will attend.
- H_o : $p \ge 0.6$ and H_a : p < 0.6
- Type II error: Your decision is to accept H_0 but in reality H_a is true, which means you believe more than 60% of students will attend, but in reality in that party night, a little student will show up. You would waste money on preparing large among of refreshments.

Example 1

- Type I error will course the awful experience of all party participants
- Type II error will course the waste of resource
- Both are bad, and you want to avoid.
- In statistics, we usually control the probability of type I error to be fixed, e.g. 0.05, then try to minimize the probability that type II error happens.